A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing
نویسندگان
چکیده
Abstract The discovery of ferroelectricity in the fluorite structure based hafnium oxide (HfO 2 ) material sparked major efforts for reviving ferroelectric field effect transistor (FeFET) memory concept. A Novel metal-ferroelectric-metal-ferroelectric-insulator-semiconductor (MFMFIS) FeFET is reported on dual integration as an MFM and MFIS a single gate stack using Si-doped Hafnium (HSO) (FE) material. MFMFIS top bottom electrode contacts, HSO layers, tailored to area ratio (AR-TB) provide flexible tuning improving performance. AR-TB shows tradeoff between voltage increase weaker FET Si channel inversion, particularly notable drain saturation current I D (sat) when decreases. Dual layer enables maximized window (MW) dynamic control its size by switching contribution through change. via further merits terms low saturated MW size, extremely linear at wide range update, well high symmetry long term synaptic potentiation depression. reliability variability, temperature dependence, endurance, retention. concept thoroughly discussed revealing profound insights optimal enhancing
منابع مشابه
Backpropagation for Energy-Efficient Neuromorphic Computing
Solving real world problems with embedded neural networks requires both training algorithms that achieve high performance and compatible hardware that runs in real time while remaining energy efficient. For the former, deep learning using backpropagation has recently achieved a string of successes across many domains and datasets. For the latter, neuromorphic chips that run spiking neural netwo...
متن کاملConvolutional Networks for Fast, Energy-Efficient Neuromorphic Computing
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural ...
متن کاملEnergy Efficient and Error Resilient Neuromorphic Computing in Vlsi
Realization of the conventional Von Neumann architecture faces increasing challenges due to growing process variations, device reliability and power consumption. As an appealing architectural solution, brain-inspired neuromorphic computing has drawn a great deal of research interest due to its potential improved scalability and power efficiency, and better suitability in processing complex task...
متن کاملEnergy-Efficient Neuromorphic Classifiers
Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the...
متن کاملdesigning and validating a textbook evaluation questionnaire for reading comprehension ii and exploring its relationship with achievement
در هر برنامه آموزشی، مهم ترین فاکتور موثر بر موفقیت دانش آموزان کتاب درسی است (مک دونو و شاو 2003). در حقیقت ، کتاب قلب آموزش زبان انگلیسی است( شلدن 1988). به دلیل اهمیت والای کتاب به عنوان عنصر ضروری کلاس های آموزش زبان ، کتب باید به دقت ارزیابی و انتخاب شده تا از هرگونه تاثیر منفی بر دانش آموزان جلوگیری شود( لیتز). این تحقیق با طراحی پرسش نامه ارزیابی کتاب که فرصت ارزیابی معتبر را به اساتید د...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanotechnology
سال: 2021
ISSN: ['1361-6528', '0957-4484']
DOI: https://doi.org/10.1088/1361-6528/ac146c